
On the Design and Implementation of a wire-speed

Pending Interest Table

Matteo Varvello†, Diego Perino⋆, Leonardo Linguaglossa⋆

Bell Labs, Alcatel-Lucent, †USA, ⋆France

{first.last}@alcatel-lucent.com

Abstract—Information-Centric Networking (ICN) is a novel
networking paradigm that aims at making network routers aware
of the data they transfer. This new paradigm requires changes
in the routers in order to support networking operations on
content names at wire speed. NDN, one of the most popular ICN
proposal, also suggests that routers should keep track of what
content is requested and from which line-card’s interface, in a
data structure called Pending Interest Table (PIT). In this work,
we set out to understand how to design a PIT that can support
wire-speed. We survey the existing literature and propose few
new designs; then, we evaluate numerically the design spectrum
for the PIT. Finally, we implement the most promising design on a
network processor and evaluate its performance. Our preliminary
results are encouraging: we successfully handle a PIT with about
1 Million entries with a wire-speed of 10 Gbps.

I. INTRODUCTION

The research community has recently proposed Information-

Centric Networking (ICN) [4], a novel networking approach

where information (or content) replace end-hosts as communi-

cation entities. ICN proposes to make network elements, such

as routers, aware of the data they transfer. On the one hand,

this requires more complex networking operations based on

content names instead of IP addresses. On the other hand,

it has several attracting features: integration of caching in

network elements, native multicasting, etc.

NDN [7] is one of the most popular ICN designs (Section

II). Among the many interesting features, NDN proposes

to aggregate Interests, or content requests, when they are

addressed to the same content name. This is realized by mean

of the Pending Interest Table (PIT), a novel data structure in

the context of router design. The PIT keeps track of what

content is requested and from which line-card’s interface; this

ensures a single outstanding Interest in presence of concurrent

content requests, and it allows to multicast the Data packet

received as a response. An efficient design of the PIT is thus

key to enable NDN (or ICN) at wire speed.

The PIT’s design consists of two aspects: placement and

data structure. Placement refers to where in a router the PIT

should be implemented. Data structure refers to how PIT

entries should be stored and organized to enable efficient oper-

ations. Despite CCNx, NDN’s prototype, currently implements

the PIT as a central hash-table, many recent works [6], [9],

[15] show that this solution quickly becomes a bottleneck as

we add more line-cards to a router. Accordingly, these works

propose new PIT placements as well as novel data structures.

This work focuses on the design and implementation of a

PIT that can support wire-speed (cf. Section III). We start by

discussing the goals one needs to keep in mind when designing

and implementing a PIT. Then, we set out to understand

which placements and data structures are possible. Finally,

we evaluate all placements and data structures numerically,

while evaluating a specific design via a prototype that we have

realized on a 10 Gbps network processor [2].

We identify in the literature three PIT placements: input

only [9], [15], output only [6], and input-output [6]. The

labels indicate the a content router’s linecard where the PIT

resides: either in input, output, or both. We also make a

contribution by proposing to place the PIT on a third party

line-card “delegated” for a set of content names; accordingly,

we refer to this placement as third party. We also identify the

following data structures either directly proposed for the PIT

or that we select as promising solutions: linear-chained hash-

table (LHT) [8], d-left open-addressed hash-table (DHT) [8],

counting Bloom filters (CBF) [9], [15] and encoded name

prefix trie (ENPT) [6].

We evaluate numerically the different PIT placements along

with the data structures (Section IV-A). With respect to the

placement, the third party solution is the most promising: it

requires a single probe to the data structure to realize all

PIT operations (insert, update and delete), while enabling

support for timers (necessary to delete entries as they expire),

multipath, correct Interest aggregation and loop detection. The

drawback is an additional switching operation in the router’s

central switch in order to delegate each PIT’s operation. With

respect to the data structure, we conclude that DHT is the

best solution for the PIT: it can be coupled with all PIT’s

placements, while supporting the highest number of packets

per second for both average and worst case scenarios.

Based on the indications from the numerical evaluation, we

have implemented a DHT-based PIT on a network processor

(Sec IV-B), a software-programmable device optimized for

networking applications widely used on router’s line-cards [1].

The main outcome of the early experimental evaluation is that

a DHT-based PIT can handle traffic up to 10 Gbps while

storing up to 1 Million entries, confirming on real hardware

the numerical results.

II. NAMED DATA NETWORKING

A content in NDN consists of a sequence of chunks,

each addressed with a hierarchical human-readable name,

e.g., /NOMEN/PAPERS/PaperA.pdf/chunk0. A user re-

quests content by sending several Interest packets addressed

to the name of each chunk that composes the desired content.

Interests are forwarded toward content sources using longest

prefix matching (LPM) computed over a set of content prefixes

stored in a Forwarding Information Base (FIB). Multipath is

supported by forwarding Interest on multiple interfaces. In

order to prevent loops, Interests contain a random nonce value.

The Interest propagation leaves a trail of “bread crumbs” that

a chunk follows to reach back the original requester, thus

realizing symmetric routing. These bread crumbs are also used

to aggregate Interests for the same chunk, naturally realizing

multicast at the network layer. Finally, content routers can

temporarily store chunks in a Content Store (CS), and serve

them in case of future requests.

To realize symmetric routing and multicasting, NDN uses

a Pending Interest Table (PIT). The PIT keeps track of the

interfaces from where chunks have recently been requested

and yet not served. A PIT’s entry is the tuple <content name,

list interfaces, list nonces, expiration>. The content name

indicates for which chunk there is at least a pending Interest;

list interface contains the set of interfaces where at least an

Interest addressed to content name was received; list nonces

contains the set of nonces extracted from the pending Interests;

expiration refers to the time when the entry will expire, and it

is the sum of the time when the first Interest was received and

a settable timeout value. Lookups in the PIT are done using

LPM on the content name as in the FIB.

Three operations can be performed on the PIT: insert,

update and delete. The insert operation is used when a new

Interest is received: first, we use the content name extracted

from the Interest to lookup the PIT and verify whether an

entry associated to this content is already present or not. If

not, we complete the insert operation by creating a new entry;

otherwise, if the entry is not expired the insert becomes an up-

date operation. The update operation requires to further verify

that the Interest nonce is not contained within list nonces, in

which case a loop is detected and no entry is added. If not, if

the interface from where the Interest was received is contained

in list interfaces, no further action is needed; otherwise, the

new interface is added to list interface. The delete operation

is used in two scenarios: when an entry in the PIT expires

and when a Data is received. The delete consists of a lookup

operation to identify the correct entry, coupled with a low level

delete that depends on the data structure used. To summarize,

all PIT operations require the same number of probes to the

PIT’s data structure.

III. DESIGN SPACE

This Section explores the design space for the PIT. We start

by discussing the requirements of a PIT’s design. Then, we

set out to understand to which extent the current proposals

for PIT’s placement, i.e., “where” in a router the PIT should

be implemented, satisfy such requirements; we also present a

novel placement that, to the best of our knowledge, has not yet

been proposed. Finally, we analyze pros and cons of popular

data structures, i.e., how PIT entries are stored and organized,

when used to implement the PIT.

A. Requirements

Frequent operations – Since Interest are smaller than Data,

the “load” on the PIT can be defined as the fraction of

traffic which is composed by Interests. Such load drives the

frequency of PIT’s operations. Let’s assume a wire speed of 40

Gbps, Interest packet with a size of 80 bytes and Data packet

with a size of 1,500 bytes. As a worst case, we consider a

load equal to 100% where no Data is available in response

of the Interests; in this case, the wire is saturated by Interests

and PIT’s operations peak at 60 Million operations per second.

However, in a more realistic scenario where Data are correctly

transmitted as responses to the Interests, flow balance or a

load of 50%, the frequency of PIT’s operations reduces to 6

Millions per second.

Deterministic operation time – In a content router, multiple

packets are processed in parallel to hide memory access time

and increase throughput. However, packets also have to be

processed in a specific order to guarantee protocol correctness;

it follows that a non deterministic operation time would require

input queues to buffer packets, causing processes to idle while

waiting for others to terminate. It is thus very important that

a PIT design achieves deterministic operation time.

Matching algorithm – NDN suggests to use LPM to perform

lookups in the PIT. As highlighted in [16], exact matching

on PIT enables the basic NDN functionalities without loss of

generality, while gaining in speed and simplicity. Due to the

potential high frequency of PIT’s operations, in this work we

also assume PIT’s lookup is performed using exact matching

and not LPM; we recognize that more complex access strate-

gies to the PIT can improve NDN performance [5], and we

plan to address this issue as future work.

Timer support – PIT’s entries are deleted after a timeout

to avoid the PIT’s size to explode over time. A timeout

also enables protection against simple attacks that could over-

flood a router’s PIT [14]. It follows that each PIT’s entry

has to be associated to a timer, and mechanisms to detect

timer expiration and to purge expired entries are needed. The

presence of timers increases the rate of delete operations; when

the load equals 100%, the deletion rate matches the insertion

rate, e.g., 60 Million operations per second in a 40 Gbps link.

Potential large state – The PIT size can be estimated as λ*T,

where λ refers to the wire speed and T is the time each entry

lives in the PIT. In presence of flow balance, we can assume

that PIT entries would not last for more than 80 ms, i.e., an

average Internet latency [3]. It follows that the PIT would

contain no more than about 250 thousand entries even when

λ = 40 Gbps. Conversely, in the worst case each entry would

expire and thus last in the PIT for as long as the timeout. If we

assume a timeout with value between 500 ms and 1 second,

the PIT can contain between 30 and 60 Million entries.

Distributed design – In NDN [7], the PIT is designed as a

centralized data structure. A high-speed router distributes data

structures that operate at wire speed among its line-cards in

order to avoid a central bottleneck. It is thus recommended

that each line-card deploys its own PIT. However, moving

from a central PIT to multiple decentralized PITs can be quite

challenging in order maintain correct Interest aggregation, loop

detection, and multipath support.

B. Placement

We assume a content router composed by N line-cards

interconnected by a switch fabric. For simplicity, we logically

separate the line-cards between input and output. For the ease

of explanation and without loss of generality, we assume

absence of the CS. We focus on the following placements:

input only, output only, input-output and third party.

Input-only – Originally proposed in [9], [15], it indicates

that a PIT should be placed at each input line-card. Accord-

ingly, an Interest creates a PIT entry only in the PIT of the line-

card where it is received. When corresponding Data returns at

an output line-card, it is broadcasted to all input line-cards

where a PIT lookup indicates whether the Data should be

further forwarded or not. This placement enables multipath,

but it lacks loop detection and correct Interest aggregation, as

each PIT is only aware of local list interfaces and list nonces.

Most importantly, this placement requires N PIT lookups in

presence of returning Data, which is a serious bottleneck.

Output-only – Originally proposed in [6], it indicates that

the PIT should be placed at each output line-card. Accordingly,

an Interest does not create a PIT entry at the input line-card

where it is received, but at the output line-card where it is

forwarded, selected using LPM in the FIB. This approach

allows aggregating Interests received at different line-cards,

but it shows limitations in case of multipath. When an Interest

received at line-card i is forwarded to two output line-cards,

j and k, the returning Data is forwarded twice by line-card i;

in fact, the Interest creates two entries in PITj and PITk,

respectively, and there is no way for line-card j and k to

detect whether the Data was already received at the other

line-card. Similarly, assume an Interest received at line-card

i is sent to line-card j and a second Interest for the same Data

is received at line-card l but sent to line-card k. In theory, the

first Data received, either on line-card j or k, should satisfy

both Interests; in practice, two Data are needed with this PIT’s

placement. Finally, the output-only placement requires a FIB

lookup per Interest, even when a previous Interest for the same

content was already received. Last, loops cannot be detected

as each output PIT is only aware of the local list nonces.

Input-output – This placement was originally discussed

in [6] but dismissed in favor of the output-only placement.

It indicates that the PIT should be placed both in input and

output. Accordingly, an Interest creates a PIT entry both at the

input line-card where it is received and at the output line-card

where it should be forwarded. Compared to the output only

placement, it has two benefits: no unnecessary FIB lookups

and duplicated packets in presence of multipath. However, the

input-output placement also suffers from the latter multipath

issue as it also requires two Data in order to serve Interests

received at different line-cards that were forwarded to different

output line-cards. Also, loops cannot be detected for the same

reasons as above. A minor problem is that a Data triggers

two lookup operations: in the PIT of the line-card where it is

received, and in the PIT(s) of the line-card(s) from where it

was originally requested. The latter issue is discussed in [6]

as the main motivation to dismiss this placement.

Third party – The third party placement indicates that a

PIT should be placed at each input line-card as in the input-

only placement. However, when an Interest for a content A is

received at a line-card it is “delegated” to a third party line-

card, here the name. This third party line-card is selected as

j = contentIDmodN , where N is the number of line-cards

in the router and contentID is the hash (e.g., CRC-32) of the

content name, or H(A). Accordingly, the PIT at j aggregates

all PIT entries for A independently of the input line-card

where an Interest for A was received. No PIT at the output

is needed; as Data is received, the output line-card identifies

j by performing H(A)modN . This placement enables both

multipath and loop detection as the third party line-card acts

as an aggregation point. For example, when two Data are

expected at two different output line-cards the first Data

received is always forwarded to the third party line-card where

it consumes each pending Interest. It follows that as the second

Data is received and forwarded to the third party line-card, no

PIT entries will be available anymore. In addition, compared

to the input-output placement it only requires a single lookup

per PIT’s operation. The drawback of the third party placement

is that it generates an additional switching operation for both

Interest and Data. Such increase in switching operations can

be absorbed by additional switch fabrics as commonly done

in commercial routers [13].

C. Data structure

In the literature, three data structures have been proposed

for the implementation of the PIT: counting Bloom filter [15],

[9], hash-table [11], [16], and name prefix trie [6]. If not

otherwise noted, we assume that the PIT contains n tuples

<content name, list interfaces, list nonces, expiration>. In

the following, we overview each data structure in detail while

discussing its strengths and weaknesses.

Counting Bloom filter (CBF) – A CBF is a data structure

for membership queries with no false negative probability and

tunable false positive probability. Compared to a classic Bloom

filter, CBF enables deletion using a counter per bit. In [9],

[15], the authors propose to use a CBF to implement the

PIT. A CBF-based PIT only stores a footprint of each PIT’s

entry, i.e., available or not, which realizes great compression.

The drawback is the presence of false positives that generate

wasted Data transmissions. Also, a CBF-based PIT can only be

coupled with the input-only placement since the compression

of its entries loses the information contained in list interfaces

which requires to lookup PITs at each input line-card in order

to determine where a Data should be forwarded. Finally, a

CBF-based PIT cannot detect loops and support timers, as

nonce values and timestamps are lost in the compression

as well. The memory footprint of a Bloom filter is S =
−kn

log(1−p
1

k)
, where k is the number of hash functions, and p

the false positive probability. However, a CBF requires k
′

· S
memory, where k

′

denotes the size of a counter. For a CBF-

based PIT, we assume k = 8, k
′

= 5 and p = 0.1%.

Hash-table – It is a data structure that maps keys to values.

In [11], [16], the authors suggest to implement the PIT using

a hash-table where a content name is used as key and its

corresponding PIT’s entry is used as a value. Compared to the

CBF-PIT, a PIT based on a hash-table can be coupled with

all placements, and it can detect loops (if the PIT placement

supports it as well) and support timers. These features come

at the expense of a larger memory footprint compared to CBF.

In theory, a PIT based on a hash-table can perform all

operations with a single memory access. In practice, multiple

accesses are needed in presence of collisions, i.e., when

multiple keys map to the same bucket. A classic hash-table

uses chaining, i.e., a list per bucket, to handle collisions.

Chaining guarantees that PIT operations are accomplished in

2+α
2 memory accesses on average, where α = n

m
and m refers

to the number of buckets. However, when collisions happen, up

to O(log(n)
log(log(n))) accesses (assuming n=m) are needed, which

can severely hurt the required determinism.

Several approaches exist to improve upon the classic hash-

table with chaining [8]. Multiple choice hash-tables, as d-left

hashing, are data structures where d hash functions (d ≥ 2)
are used: each entry is hashed d times and added to the less

loaded bucket among the d identified. This strategy trades

increased complexity and average access time, computation

of d hashing functions and d probes to the data structure, with

lower collision probability, which in turn reduces the number

of memory accesses in the worst case, e.g., O(log(log(n))
dφd

)
(assuming n=m) where φd is the asymptotic growth rate of the

d-th order Fibonacci numbers. Open-addressed hash-tables are

another solution where every bucket stores a fixed number of

items; the size of a bucket is limited by the amount of data

that can be read with a single access to the memory. It follows

that even in presence of collisions a single memory access is

enough. The drawback is a larger memory footprint compared

to the previous hash-tables.

Based on this discussion, we propose the following so-

lutions to implement a PIT based on a hash-table: linear-

chaining hash-table (LHT), and open-addressed d-left hash-

table (DHT). We assume every PIT tuple is 48+l bits long: l

bits for the content name, 16 bits for expiration, 16 bits for

list nonces, 16 bits for list interfaces. A LHT entry requires

32 additional bits to store the CRC of the content name and

32 bits to store a pointer to the next element of the chain,

summing up to 112+l bits per entry. For DHT, we consider

d = 2 and we set the maximum number of items per bucket

equal to the longest possible chain; it follows that DHT is

over-dimensioned w.r.t. the amount of elements to be stored.

The number of memory accesses per operation is d+1 = 3 if

the d sub-tables are accessed sequentially (DHT), and 2 if the

d sub-tables are accessed in parallel (DHTp). In addition to the

48+l bits of the PIT tuple, a DHT-based PIT entry requires 32

bits to store the CRC of the content name, i.e., 80+l bits. As

DHT is over-dimensioned, it is possible to reduce its memory

footprint by removing the content name from the PIT tuple,

and replace it with a pointer, 32 bits, achieving a total of 112

bits. This requires to store a list of content names in a separate

data structure that also accounts in the total memory footprint.

In order to support deletion, we propose a lazy mechanism.

Specifically, we propose to remove an expired entry only when

this entry is accessed by another PIT operation. In such case,

LHT requires an additional write to the memory in order to

rearrange pointers; this additional write is not needed with

DHT as there are no pointers to maintain.

Name prefix trie – It is an ordered tree used to store/retrieve

values associated to “components”, set of characters sepa-

rated by a delimiter; for example, NOMEN is a component

in e.g., /NOMEN/PAPERS/PaperA.pdf/chunk0 and the de-

limiter is /. The name prefix trie supports LPM, and exact

matching as a subset of it. The Encoded Name Prefix Trie

(ENPT) [6] reduces the memory footprint of a name prefix trie

by encoding each component to a 32-bits integer called “code”.

The drawback is that this compression requires to introduce a

hash-table to map codes to components. The ENPT-based PIT

described in [6] does not specify any mechanism to detect

loops and remove PIT entries with expired timers; however

both operations can be accomplished assuming the usage of

the tuple described above as a PIT entry. To do so, we

simply have to add to each PIT’s entry the code associated

to the content name. Similarly, the lazy deletion mechanism

discussed above can be used to remove entries when needed.

In a ENPT-based PIT, each operation starts at the root of the

trie and proceeds iteratively along the tree until a leaf node is

reached or it is not possible to further proceed: it follows each

PIT operation requires a number of accesses to memory that

is linear with the number of components in a content name.

Recall that a ENPT-based PIT also require an external hash-

table to store PIT tuples: it follows that the memory footprint

of a ENPT-based PIT is the size of the ENPT plus this hash-

table. Since no details is further provided on which hash-table

should be used in [6], we assume either LHT or DHT for

the reasons discussed above. Finally, two additional accesses

to memory are required to retrieve/update/remove an element

from the hash-table once the node in the ENPT is found.

IV. EVALUATION

In this section, we first numerically evaluate the different

placements and data structures for PIT. Then, we select the

most promising data structure and implement it on a Cavium

Octeon network processor [2]. We use this implementation to

evaluate PIT’s performance on real hardware.

A. Numerical

We start by comparing the memory footprint of the fol-

lowing data structures for PIT: counting Bloom filter (CBF),

50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Load [%]

M
p
c
k
s

Avg LHT
Avg ENPT
Worst LHT
Worst ENPT
DHTp
DHT
CBF
Pck rate

(a) 10 Gbps line-card.

50 60 70 80 90 100
0

10

20

30

40

50

60

Load [%]

M
p
c
k
s

LHT RLDRAM

ENPT RLDRAM+RLDRAM

DHTp RLDRAM

CBF RLDRAM

LHT DRAM

ENPT RLDRAM+DRAM

DHTp DRAM

Pck rate

(b) 40 Gbps line-card.

1 10 100 1000
1

10

100

1000

Number of line cards

M
p
c
k
s

LHT, Input only

ENPT Input only

DHTp, Input only

CBF, Input only

Pck rate, Input only

All, Pck rate, Input−Output

All, Pck rate, Output/Third party

(c) 10 Gbps line-card.

Fig. 1. Numerical evaluation ; Interest packet size = 80 Bytes ; Data packet size = 1,500 Bytes.

of entries 62K 252K 8M 30M

CBF 584 (584) KB 2.3 (2.3) MB 71 (71) MB 273 (273) MB

LHT 2.1 (4.1) MB 8.8 (16) MB 265 (500) MB 1 (1.9) GB

DHT(p) 3.9 (5.8) MB 15.6 (23) MB 483 (717) MB 1.8 (2.7) GB

ENPT N.A. 2 (2) MB 30 (30) MB N.A.

TABLE I
MEMORY FOOTPRINT ; CBF, LHT, DHT(P) AND ENPT ;

N=[100K,1M,10M] ; L=[20,50]B (VALUES FOR 50B ARE IN BRACKETS).

linear-chained hash-table (LHT), d-left open-addressed hash-

table with sequential (DHT) and parallel access (DHTp) to

sub-tables, and encoded name prefix trie (ENPT). Our goal

is to understand which memory should be used for each

data structure. Remember that today’s largest on-chip memory,

SRAM, has a size of 4.25 MB and access time of 1 ns; off-

chip memory can be SRAM (access time 4 ns, size 25 MB),

RLDRAM (access time 15 ns, size 250 MB) or DRAM (access

time 55 ns, size 10-100 GB) [11].

Table I compares the memory footprint of all data structures

as a function of the number of PIT entries n and length of the

content names l. For LHT, DHT, DHTp and CBF we derive

the numbers using the formulas presented in Section III-C;

for ENPT, in absence of analytical formulation we use values

derived from their experimental evaluation [6]. Please note

that DHT and DHTp have the same memory footprint. We set

n=[62K,252K,8M,30M]: <62K;8M> and <252K;30M> are

the values for n derived assuming a load of 50,100% (flow

balance and worst case) at 10 and 40 Gbps, respectively (cf.

Section III-A); we set l=[20,50] Bytes as in [6], and we refer

to these lengths as “short” and “long”. For minimum number

of entries, n=62k, all data structures fit on on-chip memory,

though DHT(p) only fit if we assume short content names.

For n=252k, only CBF and ENPT can be stored on on-chip

memory, instead. Overall, no data structure fits on on-chip

memory when we assume n=8-30 Millions, worst cases at 10

and 40 Gbps. Since the PIT is a critical element of a content

router, we believe it should be dimensioned to support a worst

case; accordingly, we conclude that ENPT and CBF fit on

RLDRAM while LHT and DHT(p) only fit on DRAM.

We now compute for each <data structure, memory> pair

how many packets per second it can handle. As CBF does

not support timers, to be fair we do not consider additional

probes required to purge expired entries (cf. Section III-C). We

assume Interest packets of 80 bytes and Data packets of 1,500

bytes carried over a 10 Gbps link. For LHT and ENPT, we

also differentiate between “average” and “maximum” cases:

for LHT, this refers to the average and maximum chain length,

while for ENPT this refers to average and maximum number

of components per content name. For the other data structures,

we do not differentiate as they are not impacted by chaining

or by number of components per content name. We set the

maximum number of component to 15 as in the traces used

in [6]. Figure 1(a) shows the number of packets each solution

can handle as a function of load; the Figure also shows as a

baseline the number of packets per second, both Interest and

Data, received at the line-card (Pck rate).

Figure 1(a) shows that in a flow balanced scenario,

load=50%, all data structures can handle the target packet

rate of 1.5 Mpcks. As the load increases, each data structure

can only serve a fraction of the packet rate: for example,

ENPT sustains on average a load up to 90% with no penalties,

whereas DHTp handles a load up to 95%. LHT also sustains a

load of 95% on average. However, in the maximum case LHT

and ENPT only handle a load up to 80 and 75%, respectively.

CBF does slightly better as it sustains a load up to 85%. From

this analysis, we conclude that DHT and DHTp have the best

performance as they sustain the highest load, and thus largest

number of packets per second, while providing determinism,

i.e., average performance that matches the maximum case one.

Figure 1(b) investigates the performance of each data struc-

ture over a 40 Gbps link. For LHT and ENPT, we only consider

the average case, while for DHT we only consider its paral-

lelized version, DHTp. In addition, we speculate a scenario

where LHT, DHTp and ENPT’s hash-table are implemented

over RLDRAM; despite such large RLDRAMs do not exist

today (cf. Table I), the rationale is that they might exist in the

future. As expected, Figure 1(b) shows that RLDRAM largely

improves the performance of each data structure. For example,

DRAM-based DHTp peaks at about 9 Mpcks (better visible

in Figure 1(b)) which in a 40 Gbps link is only enough to

sustain a load of 65%; instead, RLDRAM-based DHTp can

still handle a load of 95% even in a 40 Gbps link, i.e., about

32 Mpcks. Similarly, all-RLDRAM-ENPT sustain a load up to

80%, whereas when DRAM is used for its hash-table ENPT,

as CBF, cannot even sustain the flow balanced scenario.

Memory Mpcks <avg,min> Timer Loop Placement

LHT DRAM (8.5,3.6) Yes Yes All

DHT DRAM (6.1,6.1) Yes Yes All

DHTp DRAM (9,9) Yes Yes All

CBF RLDRAM (4.2,4.2) No No Input-only

ENPT RLDRAM (6.7,3) Yes Yes All

TABLE II
COMPARISON OF DATA STRUCTURES FOR THE PIT

Table II summarizes the results and analysis of the PIT data

structures. We conclude that DHT and its optimization DHTp

are the best data structures for PIT; in fact, they both support

all required features as well as possible placements, while

achieving highest speed for both average and worst cases.

We finally evaluate the PIT’s placements while coupled

with the data structures. Figure 1(c) (log-log scale) shows the

number of packets per second each line-card has to process as

a function of the number of line-cards and PIT placement.

We consider a flow balanced scenario in a 10 Gbps link,

i.e., 1.5 Mpcks on the wire. Figure 1(c) shows that the

input only placement requires each line-card to process a

number of packets that grows exponentially with the number

of line-cards. This is expected as every Data packet has to be

broadcasted to all other line-cards. It follows that a maximum

of 4, 8 and 10 line-cards can be supported if the PIT is

implemented using CBF, ENPT, and LHT/DHTp, respectively.

Conversely, for all remaining PIT’s placements the amount of

packets to process is independent from the number of line-

cards. It is worth noticing that the input-output placement

doubles the number of packets each line-card has to perform,

whereas output-only and third party placement does not add

any additional burden to the line-cards.

Based on these results and the discussion in Section III-B,

we conclude that the third party placement has the best

performance: in fact, it requires a single probe to the data

structure to realize all PIT operations, while enabling support

for timers, multipath, Interest aggregation and loop detection.

B. Implementation

This section evaluates a proof of concept DHT-based PIT

that we implemented on a Cavium Octeon Network processor

(NP), a software-programmable device optimized for network-

ing applications, that is widely used on router line-cards [1].

Our reference NP board is based on a Cavium Octeon Plus

CN5650 12 cores 600 MHz network processor [2] equipped

with 48KB of L1 cache per core, 2MB of shared memory, 4

GB of off-chip DRAM memory, and an SFP+ 10GbE.

We do not implement the optimized version of DHT, DHTp,

as our reference NP is equipped with only one memory

controller that manages all memory banks, thus not allowing

parallel access to the off-chip DRAM. In addition, we do not

implement any further hash-table optimization technique, as

bucket prefetching or summary bloom filters [12], [8], or ad-

hoc solutions for multi-core architectures,e.g., [10]. We plan

to investigate these solutions as future work.

We evaluate our proof of concept for a DHT-based PIT

assuming a load=50-80% at 10 Gbps, with a PIT size of 62K

and 1M entries respectively. We generate Interest packets of

80 bytes and Data packets of 1,500 bytes; we assume short

content names (20 Bytes) that are inserted at the beginning of

the IP payload. With only 3 cores our prototype successively

handles all received packets in the flow balanced scenario,

i.e., load=50% and 1.5 Mpcks, while 8 active cores are

required when the load goes up to 80%, i.e., 3.4 Mpcks.

V. CONCLUSIONS AND FUTURE WORK

Named Data Networking (NDN) is today’s most complete

solution for Information-Centric Networking, a novel network-

ing paradigm centered around information or content. In this

work, we focus on the design and implementation of the

Pending Interest Table (PIT), the table where Interest packets,

or content requests, are aggregated to enable multicasting as

well as symmetric routing, two core features of NDN. We

make the following contributions. First, we define a spectrum

of candidate designs for PIT, focusing on its placement within

a router as well as on its data structure. Then, we numerically

evaluate each design with respect to PIT’s requirements.

Finally, we implement the most interesting design on a 10

Gbps network processor and evaluate its performance. The

main outcome of the evaluation is encouraging, as our PIT’s

prototype can handle about 1 Million entries assuming a wire

speed of 10 Gbps. In the near future, we plan to extend our

proof of concept implementation to a full-fledged prototype.

ACKNOWLEDGMENTS

This work has been partially funded by the French national

research agency (ANR), CONNECT project, under grant num-

ber ANR-10-VERS-001.

REFERENCES

[1] Alcatel-lucent fp3. http://www.alcatel-lucent.com/products/fp3/.
[2] Cavium. http://www.cavium.com/.
[3] Meridian. http://www.cs.cornell.edu/.
[4] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman.

A Survey of Information-Centric Networking. 2011.
[5] G. Carofiglio, M. Gallo, and L. Muscariello. Joint hop-by-hop and

receiver-driven interest control protocol for content-centric networks. In
ICN’12, Helsinki, Finland, 2012.

[6] H. Dai, B. Liu, Y. Chen, and Y. Wang. On pending interest table in
named data networking. In ANCS’12, Austin, Texas, USA, 2012.

[7] V. Jacobson, D. K. Smetters, J. D. Thronton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Network Named Content. In CoNEXT’09, Rome.

[8] A. Kirsch, M. Mitzenmacher, and G. Varghese. Hash-based techniques
for high-speed packet processing. In Algorithms for Next Generation
Networks, pages 181–218. Springer, 2010.

[9] Z. Li, J. Bi, S. Wang, and X. Jiang. Compression of pending interest
table with bloom filter in content centric network. In CFI’12, Austin,
Texas, USA, 2012.

[10] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. Cphash: a cache-
partitioned hash table. SIGPLAN Not., 47(8):319–320, Feb. 2012.

[11] D. Perino and M. Varvello. A reality check for content centric
networking. In ICN’11, Toronto, Canada, Aug. 2011.

[12] W. So, A. Narayanan, D. Oran, and Y. Wang. Toward fast ndn software
forwarding lookup engine based on hash tables. In ANCS’12.

[13] M. Varvello, D. Perino, and J. Esteban. Caesar: a content router for high
speed forwarding. In ICN’12, Helsinki, Finland, 2012.

[14] M. Xie, I. Widjaja, and H. Wang. Enhancing cache robustness for
content-centric networking. In INFOCOM’12, Orlando, FL, USA.

[15] W. You, B. Mathieu, P. Truong, J.-F. Peltier, and G. Simon. DiPIT: a
distributed bloom-filter based PIT table for CCN nodes. In ICCCN’12,
July 2012.

[16] H. Yuan, T. Song, and P. Crowley. Scalable NDN forwarding: Concepts,
issues and principles. In ICCCN’12, 2012.

